
Planning by Rewriting:
Efficiently Generating

High-Quality Plans

Jose Luis Ambite and Craig A. Knoblock

University of Southern California/Information Sciences Institute

March 1997

ISI/RR-97-454

DTIC QUALITY INSPECTED 3

IJgC; INFORMATION SCIENCES INSTITUTE
UNIVERSITY" School of Engineering / 46 76 Admiralty Way, Suite 1001

OF SOUTHERN Marina del Rey, California 90292-66951310 822 1511
CALIFORNIA . . J

DISTRTJUnON STATEMatff

Approyed for public »IKOK; r\ 19970711 022

Planning by Rewriting:
Efficiently Generating

High-Quality Plans

Jose Luis Ambite and Craig A. Knoblock

University of Southern California/Infonnation Sciences Institute

March 1997

ISI/RR-97-454

DTIC QUALITY ESSFECTED 3

Will appear in Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), July 1997, Providence, Rhode Island.

Approved ias pvlsMc raises»®;

REPORT DOCUMENTATION PAGE
FORMAPPROVED
OMB NO. 0704-0188

——: ..__ ..._,._ ,.r «,.«, -„iiortinn nf Information is estimated to averaae 1 hour per response, including the time for reviewing instructions, searching exiting data
Public reporbnq I?"lerfn™,n^fntaa ftl data rmd^^ MmS^^S^r«^ eollecUon of information. Send comments regarding this burden estimated or any
sources, gattenng and«™™^ W™™» I2SS'*sumelrtmS?^redTOina U?is burdento Washington Headquarters Services, Directorate for Information Operations

Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1997
3. REPORT TYPE AND DATES COVERED

Research Report

4. TITLE AND SUBTfTLE

Planning by Rewriting: Efficiently Generating High-Quality Plans

6.AUTHOR(S)

Jose Luis Ambite and Craig A. Knoblock

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

ARPA
3701 N. Fairfax Drive
Arlington, VA 22203-1714

NSF
4201 Wilson Blvd.
Arlington, VA 22230

Rome Labs
Griffiss AFB
NY 13441

5. FUNDING NUMBERS

Rome/ARPA:
F30602-94-C-0210

NSF:
IRI-9313993

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RR-97-454

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Will appear In Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), July 1997, Providence, Rhode Island.

12A. DISTRIBUnON/AVAILABILrrY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Domain-independant planning is a hard combinatorial problem. Taking into account plan
quality makes the task even more difficult. We introduce a new paradigm for efficient high-
quality planning that exploits plan rewriting rules and efficient local search techniques to
transform an easy-to-generate, but possibly sub-optimal, initial plan into a low-cost plan. In
addition to addressing the issues of efficiency and quality, this framework yields a new any-
time planning algorithm. We have implemented this planner and applied it to several exist-
ing domains. The results show that this approach provides significant savings in planning
effort while generating high-quality plans.
14. SUBJECT TERMS

anytime algorithm, efficient planning, local search, plan quality,
plan rewriting, query planning, scheduling

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURrry CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

NSN 7540-01-280-5500

19. SECURrry CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

11

16. PRICE CODE

20. LIMrrATION OF ABSTRACT

UNLIMITED

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE -Program

Element

PR - Project
TA -Task
WU - Work Unit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

- Leave blank.
- Enter DOE distribution-categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.

- Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Planning by Rewriting: Efficiently Generating High-Quality Plans*

Jose Luis Ambite and Craig A. Knoblock
Information Sciences Institute and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

{ambite, knoblock}@isi.edu

Abstract

Domain-independent planning is a hard combinatorial
problem. Taking into account plan quality makes the
task even more difficult. We introduce a new paradigm
for efficient high-quality planning that exploits plan
rewriting rules and efficient local search techniques
to transform an easy-to-generate, but possibly sub-
optimal, initial plan into a low-cost plan. In addition
to addressing the issues of efficiency and quality, this
framework yields a new anytime planning algorithm.
We have implemented this planner and applied it to
several existing domains. The results show that this
approach provides significant savings in planning ef-
fort while generating high-quality plans.

Introduction
Planning is the process of generating a network of ac-
tions that achieves a desired goal from an initial state
of the world. Domain independent planning accepts
as input, not only the initial state and the goal, but
also the domain specification (i.e., the operators). This
is a problem of considerable practical significance, but
domain-independent planning is computationally hard
except for its simplest formulations (Erol, Nau, k Sub-
rahmanian 1995). Moreover, in many circumstances it
is not enough to find any solution plan since the qual-
ity of the solution is important. This paper presents
a new paradigm for efficiently generating high-quality
plans.

Two observations guided the present work. First,
there are two sources of complexity in planning:

• Satisfiability: the difficulty of finding any solution
to a planning problem.

• Optimization: the difficulty of finding the optimal
solution according to a given cost metric.

For a given domain, each of these facets may contribute
differently to the complexity of planning. In particu-
lar, there are many domains in which the satisfiabil-
ity problem is easy and their complexity is dominated
by the optimization problem. For example, there may

be many plans that would solve the problem, so find-
ing one is simple (that is, in polynomial time), but
the cost of each solution varies greatly so that find-
ing the optimal one may be difficult. We shall refer
to these domains as optimization domains. Some opti-
mization domains of great practical interest are query
access planning and process planning.1

Second, planning problems have a great deal of
structure. Plans are a type of graphs with strong
semantics, determined both by the general properties
of planning and each particular domain specification.
This structure should and can be exploited to improve
the efficiency of the planning process.

Prompted by the previous observations, we devel-
oped a novel approach for efficient planning in opti-
mization domains: Planning by Rewriting (PBR). The
framework works in two phases:

1. Generate an initial solution plan. Recall, that in op-
timization domains this is easy. However, the quality
of this initial plan may be far from optimal.

2. Iteratively rewrite the current solution plan improv-
ing its quality using a set of plan rewriting rules until
either an acceptable solution is found or a resource
limit is reached.

There are several important points to note in this
basic framework. First, the rewritten plans are always
solutions to the given planning problem. Thus, the
search occurs in the space of solution plans, which is
in many cases much smaller than the space of partial
plans that other planning systems usually explore. Sec-
ond, efficient search of the space of rewritings is criti-
cal to the success of the method. Thus, we adapt tech-
niques from local search to help in this process. Finally,
our framework yields an anytime algorithm (Dean &
Boddy 1988). The planner always has a solution to of-
fer at any point in its computation (modulo the initial
plan generation, which should be fast). This is a clear
advantage over traditional planning approaches, which
must run to completion before producing a solution.
Thus, our system allows the possibility of trading off

"Copyright ©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

1 Interestingly, one of the most widely studied planning
domains, the blocksworld, also has this property.

planning effort and plan quality. For example, in query
planning the quality of a plan is its execution time and
it may not make sense to keep planning if the cost of
the current plan is small enough, even if a cheaper one
could be found.

As motivation, consider two domains: query pro-
cessing in a distributed, heterogeneous environment
and manufacturing process planning. Distributed
query processing (Yu k Chang 1984) involves gener-
ating a plan that efficiently computes a user query.
This plan is composed of data retrieval actions at
diverse information sources and operations on this
data (such as join, selection, etc). Some systems
use a general-purpose planner to solve this problem
(Knoblock 1996). In this domain it is relatively easy
to construct an initial plan and then transform it using
a gradient-descent search to reduce its cost. The plan
transformations exploit the commutative and associa-
tive properties of the (relational algebra) operators and
facts such as that when a group of operators can be
executed together at a remote information source it is
generally more efficient to do so. Figure 1 shows some
sample transformations.

jom-swap
get(ql, dbl) N (get(q2, db2) txi get(q3, db3)) &
get(q2, db2) N (get(ql, dbl) M get(q3, dbS))
reraot e-join-eval
(get(R,db) txi get(S,db)) A capability(db,join) =>
get(R M S, db)

Figure 1: Transformations in Query Planning

In manufacturing, the problem is to find an econom-
ical plan of machining operations that implement the
desired features of a design. In a feature-based ap-
proach (Nau, Gupta, k, Regli 1995) it is possible to
enumerate the possible actions involved in building a
piece by analyzing its CAD model. It is more difficult
to find an ordering of the operations and the setups
that optimize the machining cost. However, similar to
query planning, it is possible to incrementally trans-
form a (possibly inefficient) initial plan. Often, the or-
der of actions does not affect the design goal, only the
quality of the plan, thus actions can commute. Also, it
is important to minimize the number of setups because
fixing a piece on a machine is a rather time consum-
ing operation. Such grouping of machining operations
on a setup is analogous to evaluating a subquery at a
remote information source.

In summary, this paper develops a new planning
paradigm yielding several contributions. First, by us-
ing local search techniques, high-quality plans can be
efficiently generated. Second, the rewriting rules pro-
vide a natural and convenient mechanism to specify
complex plan transformations. Third, it offers a new
anytime planning algorithm.

Planning by Rewriting
We will describe the main issues in Planning by Rewrit-
ing as an instantiation of the local search idea (Pa-
padimitriou & Steiglitz 1982):

• Selection of an initial feasible point: How to effi-
ciently generate an initial solution plan.

• Generation of a local neighborhood: The neighbor-
hood is the set of plans obtained from the application
of the plan rewriting rules.

• Cost function to minimize: The given plan evalua-
tion function could range from a simple domain inde-
pendent cost metric, such as the number of steps, to
more complex domain specific ones, such as query
evaluation cost or manufacturing time for a set of
parts.

• Selection of the next point: What is the next plan
to consider. This choice determines how the global
space will be explored and has a significant impact
on the efficiency of planning. For example, steepest
descent, first improvement, random walk, etc.

In the following subsections we expand these topics.
First, we introduce some background on planning and
rewriting. Second, we discuss the initial plan genera-
tion. Third, we show how the local neighborhood is
generated by the rewriting rules and present their syn-
tax, their semantics, and a rule taxonomy. Finally, we
address the selection of the next plan.

Planning and Rewriting Concepts

A plan is represented by a graph notation, in the spirit
of partial-order causal-link (POCL) planners, such as
UCPOP (Penberthy & Weld 1992). The nodes are
plan steps, that is, domain actions. The edges specify
a temporal ordering relation among steps, imposed by
causal links and ordering constraints. A causal link
is a record of how a condition is used in a plan. This
record contains the condition, a step that produces (es-
tablishes) it, and a step that consumes it (that is, a
step which needs it as a precondition). By causality,
the producer must precede the consumer. The order-
ing constraints arise from solving operator threats and
resource conflicts. An operator threat occurs when a
step has an effect that negates the condition of a causal
link and can possibly be ordered between its producer
and its consumer. To prevent this situation, which
possibly makes the plan inconsistent, POCL planners
order the threatening step either before the producer
(promotion) or after the consumer (demotion).

Operators may need to use certain resources to per-
form their actions. In this paper, we consider unit
non-consumable resources, that is, those that are fully
acquired by an operator until the completion of its ac-
tion, and then released to be reused (Knoblock 1994b).
For this type of resource, steps requiring the same re-
source have to be sequentially ordered. Finally, note

that all conditions in the plan are fully ground because
we start with a complete initial plan.

A plan rewriting rule, akin to term and graph rewrit-
ing rules, specifies the replacement under certain con-
ditions of a partial plan by another partial plan. Our
system ensures that the rewritten plan remains com-
plete and consistent. These rules are intended to im-
prove the quality of the plans.

Generation of an Initial Plan
Fast initial plan generation is domain-specific in na-
ture. It requires the user to specify an efficient mecha-
nism to compute the initial solution plan. By the defi-
nition of optimization domains this should not be hard.
We have experimented with two approaches to con-
struct feasible initial plans: using a planner with search
control rules and exploiting simple domain-specific ap-
proximation algorithms.

A very general way of efficiently constructing plans is
to use a domain-independent generative planner that
accepts search control rules. By setting the type of
search and providing a strong bias by means of the
search control rules, the planner can quickly generate
a valid, although possibly suboptimal, initial plan. For
example, in the manufacturing domain we used depth-
first search and a goal selection heuristic based on ab-
straction hierarchies (Knoblock 1994a). This combi-
nation quickly generates a feasible plan, but often the
time required to manufacture all objects is suboptimal.

For many domains, we expect that simple domain-
dependent greedy algorithms will provide good initial
plans. For example, in the query planning domain,
the system can easily generate initial query evaluation
plans by parsing the given query. In the blocksworld it
is also straightforward to generate a solution in linear
time using the naive algorithm: put all blocks on the
table and build the desired towers from the bottom up.

Generation of a Local Neighborhood
The plan rewriting rules determine the neighborhood
of the current plan to be explored. They embody
the domain-specific knowledge about what transforma-
tions of a solution plan are likely to result in higher-
quality solutions. In this section we describe the syntax
and the semantics of the rules, as well a taxonomy of
plan rewriting rules.

Rule Syntax and Semantics First, we introduce
the rule syntax and semantics through some examples.
Then, we provide a formal description. A sample rule
in the blocks world domain is given in Figure 2. Intu-
itively, it says that, whenever possible, it is better to
stack a block on top of another directly, rather than
first moving it to the table.

2 Note that the link expression in the antecedent is ac-
tually redundant. Unstack puts the block ?bl on the ta-
ble from where it is picked up by the stack operator, so
that the causal link is already implied by the : operators

(define-rule :name avoid-move^twice
:if (:operators ((?nl (unstack ?bl ?b2))

(?n2 (stack ?bl ?b3 Table)))
:links (?nl (on ?bl Table) ?n2)
:constraints ((possibly-adjacent ?nl ?n2)

(:neq ?b2 ?b3)))
:replace (: operators (?nl ?n2))
•.with (:operators (?n3 (stack ?bl ?b3 ?b2))))

Figure 2: Blocks World Rewriting Rule2

A rule for a manufacturing domain (Minton 1988) is
shown in Figure 3. It states that if a plan includes two
consecutive punching operations to make holes in two
different objects, but another machine, a drill-press, is
also available, the plan can be parallelized by replacing
one of the punch operations by using the drill-press.

(define-rule :name punch-by-drill-press
:if ('.operators ((?nl (punch ?ol ?widthl ?ornl))

(?n2 (punch ?o2 ?width2 ?orn2)))
:links (?nl ?n2)
:constraints ((:neq ?ol ?o2)

(possibly-adjacent ?nl ?n2)))
:replace (:operators (?nl))
:with (:operators

(?n3 (drill-press ?ol ?widthl ?ornl))))

Figure 3: Process Planning Rewriting Rule

In general, the rule syntax follows the template in
Figure 4. The rewriting algorithm is outlined in Fig-
ure 5. The semantics of the rules is as follows. The
antecedent, the :if field, describes a graph specifica-
tion (operators, links, and constraints) that is matched
against the plan. The : operators field consists of a
list of step number and step predicate pairs. Each
step predicate is interpreted as an step action (or as
one of the resources used by the step, if the keyword
:resource is present, e.g. Figure 7). The :links
field consists of a list of link specifications. A link
specification can match either any ordering link in
the plan, a causal link if a predicate is given, or an
ordering link introduced in the resolution of threats
(if the keyword :threat is present). Finally, built-
in and user-defined predicates can be specified in the
: constraints field. The built-in predicates include
inequalities (:neq), comparison, and arithmetic predi-
cates. The user-defined predicates may act as filters on
the previous variables or introduce new variables (and
compute new values for them). Formally, the language
of the antecedent forms a conjunctive query with in-
terpreted predicates against the plan graph. The rule
matches can be computed either all at the same time,
as in bottom-up evaluation of logic databases, or one-

and : constraints specification. The interpreted predicate
possibly-adjacent ensures that the operators are consec-
utive in some linearization of the plan.

at-a-time as in Prolog. Which option is preferable de-
pends on the search strategy.

(def ine-rule :name <rule-name>
:if (:operators ((<nv> <np> {:resource}) —)

:links ((<nv> {<lp>|:threat} <nv>) ...)
:constraints (<ip> ...))

:replace (:operators (<nv> ...)
:links ((<nv> {<lp>I:threat} <nv» ...))

:with (:operators ((<nv> <np> {rresource}) ...)
:links ((<nv> {<lp>} <nv» ...)))

<nv> = node variable, <np> = node predicate,
<lp> = causal link predicate, {} = optional
<ip> = interpreted predicate, I = alternative

Figure 4: Rewriting Rule Template

1. Match rule antecedent, :if field, against the plan,
returning a set of candidate rule instantiations.

2. For each antecedent instantiation:

(a) Remove from the plan the subgraph specified in
the :replace field.

(b) Generate all consistent embeddings of the sub-
graph specified in the : with field.

Figure 5: Outline of Plan Rewriting Algorithm

Rules must be safe, that is, all the variables appear-
ing in the consequent of the rules, : replace and :with
fields, have to appear in the antecedent. The : replace
field identifies the subgraph that is going to be removed
from the plan (a subset of steps and links of the an-
tecedent). The :with field specifies the replacement
subgraph. The system generates all valid embeddings
of the replacement subplan into the original plan (once
the subplan in the :replace field has been removed).
Thus, a single rule instantiation may produce several
rewritten plans. The formal conditions for valid rewrit-
ing, a generalization from plan merging in (Foulser, Li,
k Yang 1992), are shown in Figure 6. It is possible to
define rules whose application provably yields a correct
plan. However, this eager approach would require the
generation of many rules with very long and specific
antecedents, which are possibly expensive to match.
An alternative is a lazy approach in which the rule an-
tecedents only include a subset of the conditions neces-
sary for a valid rewriting. In this case, when the rules
are applied, the rewritten plans are checked for cor-
rectness. The "lazy" approach allows the specification
of more natural rules that express the main idea of the
transformation instead of focusing on technicalities or
rare cases. We used the latter for our experiments.

A Taxonomy of Plan Rewriting Rules In order
to guide the user in defining plan rewriting rules for
a domain or to help in designing algorithms that may

A subplan 51, embedded in a plan P, can be replaced
by a subplan 52, resulting in plan P', iff
there exists an ordering O, such that
P' = (P - 51) U 52 U O is a consistent plan, and
NetPreconditions(52, P') C NetPreconditions(51,P),
and UsefulEffects(51, P) C UsefulEffects(52, P').

Useful Effects of a subplan 5, embedded in a plan
P, are those conditions present in causal links whose
producer is in 5 and whose consumer is in P — 5.

Net Preconditions of a subplan 5, embedded in a
plan P, are those conditions in causal links whose
consumer is in 5 and whose producer is in P — 5.

Figure 6: Conditions for Valid Rewriting

automatically deduce the rules from the domain spec-
ification (see Future Work), it is helpful to know what
kinds of rules are useful. So far we have identified the
following general types of transformation rules.

Reorder: These are rules based on algebraic proper-
ties of the operators, such as commutative, associa-
tive and distributive laws. For example, the com-
mutative rule that reorders two operators that need
the same resource in Figure 7, and the join-swap
rule in Figure 1 that combines the commutative and
associative properties of the relational algebra.

(define-rule :name resource-swap
:if (:operators ((?nl (machine ?x) :resource)

(?n2 (machine ?x) :resource))
:links ((?nl :threat ?n2)))

:replace (:links (?nl ?n2))
:pith (:links (?n2 ?nl)))

Figure 7: Reorder Rewriting Rule

Collapse: These are rules that replace a subplan
by a smaller subplan. For example, when sev-
eral operators can be replaced by one, as in the
remote-join-evalrule in Figure 1, which prefers to
evaluate a join between two tables that come from
the same source at the remote source rather than lo-
cally (if the source has join processing capabilities).
Another example is the blocksworld rule in Figure 2.

Expand: These are rules that do the inverse of col-
lapse. Although we did not find this rule type in
the domains analyzed so far, it is easy to imagine
a situation in which an expensive operator can be
replaced by a set of operators that are cheaper as a
whole. For example, when some of these operators
are already present in the plan and can be synergis-
tically reused.

Parallelize: These are rules that replace a subplan
with an equivalent alternative subplan that requires
fewer ordering constraints. A typical case is when
there are redundant or alternative resources that

the operators can use. For example, the rule
punch-by-drill-press in Figure 3.

Selection of Next Plan

The strategy to select the next plan to consider de-
termines the way the solution space is searched. The
rules generate the "natural perturbations" of a plan,
but which rewriting, if any, will lead towards the global
optimum cannot be predicted in general. We have ex-
plored gradient descent techniques, such as first im-
provement and steepest descent. In first improvement,
the next plan to consider is the first rewriting that
improves the cost. This has the advantage that the
neighborhood is generated only up to the point such
a plan is found, but the improvement may not be the
best that could be achieved in that neighborhood. In
steepest descent, the minimum cost plan within the
neighborhood is chosen. This guarantees the biggest
improvement in cost in each iteration, but it requires
the whole neighborhood to be searched.

In general, the space of rewritings and the cost func-
tions are not convex, thus our gradient descent tech-
niques can get caught in local minima. To move to-
wards the optimum escaping low-quality local minima,
we used two techniques: restart and random walk. In
the first one, the system restarts the rewriting process
a fixed number of times from a different initial plan.
This technique requires an initial plan generator that is
able to provide several different/random initial plans.
The second technique is applied when the local minima
are not strict and consists of a random walk of a fixed
length along the plateau.

Initial Results
We have implemented the planner described in this
paper and applied it in several different application
domains. In this section we report on our initial results
in the domains of manufacturing process planning and
distributed query planning.

Process planning
The task in the manufacturing process planning do-
main is to find a plan to manufacture a set of parts.
We implemented the domain specification in (Minton
1988). This domain contains a variety of machines,
such as a lathe, punch, spray painter, welder, etc,
which are used to perform various operations to pro-
duce a set of parts. In this domain all of the machining
operations are assumed to take unit time and the op-
timal plan is the one that requires the minimal length
schedule. There are ten possible machining operations
for making a part. Sample rewriting rules for this do-
main appear in Figures 3 and 7.

To evaluate the performance of Planning by Rewrit-
ing (PBR), we compared it to a planner called Sage
(Knoblock 1995), which is an extension of UCPOP
that supports resources, execution and replanning. For

PBR, we defined ten plan rewriting rules for this do-
main and used a steepest descent search. We ran Sage
with a best-first search over the length of the sched-
ule (Sage-BFS) in order to find the optimal plan. We
used Sage with depth-first search and a goal selection
heuristic based on abstraction hierarchies (Sage-DFS)
to generate plans as fast as possible. Sage-DFS is also
used for the initial plan generator for PBR. We tested
each of the three systems on 300 problems that ranged
from 1 to 12 goals (25 in each set). There were 80 prov-
ably unsolvable problems. Sage-DFS was able to solve
22 more problems than Sage-BFS in the given search
limit of 50,000 nodes (Sage-DFS proved 16 solvable and
6 unsolvable). The plan size (number of steps) grows
linearly with the number of goals, from 3 steps for the
one goal problems to 14 steps for the 12 goal problems.

The results are shown in Figures 8 and 9. Figure 8
shows the average time on the solvable problems for
each problem set in the three configurations. Figure 9
shows the average schedule length for the problems
solved by all planners. As shown in the graphs, PBR
takes slightly longer than Sage-DFS, as expected since
Sage-DFS is also used to generate the initial plans for
PBR, but is able to improve their quality significantly.
PBR performs about the same as Sage-BFS on the easy
problems, both in time and in quality. For harder prob-
lems, PBR is much more efficient than Sage-BFS and
it produces plans whose quality is close to the optimal.
These results show the benefits of finding an subopti-
mal initial plan quickly and then efficiently transform-
ing it to improve its quality as proposed in PBR.

E

180

160

Sage-BFS -•—
Sage-DFS -—

PBR --

140

120 /
100 1
80 • ■

60 ■ ■

40 ■

>20 _JBr"
.-"0-..

n *&:;■?•-
...j>>^ _

4 6 8
Number of Goals

12

Figure 8: Manufacturing Time Comparison

Query planning
Distributed query processing involves generating a
plan that efficiently computes a user query. This plan
is composed of data retrieval actions at diverse infor-
mation sources and operations on this data. We used
a simplified domain for the query planner (Sage) of the
SIMS mediator (Arens, Knoblock, & Shen 1996). We
compare the performance and quality of the Sage plan-
ner and PBR for this domain, where the query plans
are trees of join operations.

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

Sage-BFS -—
Sage-DFS -—-

PBR » A. / \
/ \. /~

.../ N

/ A .°-^x~

4 6 8
Number of Goals

12

3 a o

E
F

300

250

200

150

100

50 -

Sage-BFS -•—
Sage-DFS -—

PBR *■•-

2 3 4 5
Query Size

Figure 9: Schedule Length Comparison Figure 10: Query Planning Time Comparison

In the query planning domain, Sage performs a best-
first search with a heuristic commonly used in query
optimization that explores only the space of left join
trees (Sage-BFS). For PBR, we defined the join-swap
rule of Figure 1. The initial plans were random depth-
first search parses of the query (Sage-DFS). To escape
local minima, PBR generates and rewrites three ran-
dom initial plans and picks the best rewriting. The
cost metric for all planners is based on an estimation
of the cost of the join operations and the size of the
intermediate results transmitted between the sources
and the mediator. In this experiment, we used a set of
43 conjunctive queries previously defined for a logistics
planning application involving from one to seven rela-
tions. All queries could be solved by all planners. A
set of eight relation joins could not be solved by Sage
within 50,000 nodes, while PBR could easily solve them
with low cost plans.

The results are shown in Figures 10, 11, and 12. Fig-
ure 10 shows the average time for each query set for
query sizes from one to seven. The times for PBR in-
cludes both the generation of the three random initial
plans and their rewriting. Figure 11 shows the average
quality of Sage-DFS and PBR normalized with respect
to Sage-BFS. The normalization is done for clarity be-
cause the values for Sage-BFS query cost vary con-
siderably and we want to show how PBR and Sage-
DFS perform relative to Sage-BFS as the problem size
increases. The graph shows that Sage-DFS produces
very poor quality plans on the large problems. Fig-
ure 12 shows in more detail the average quality of
PBR normalized with respect to Sage-BFS. This graph
shows that PBR performs as well as Sage-BFS for the
smaller queries and even finds better solutions for the
larger ones (up to 12% better). This is not surpris-
ing because of the restricted space of left trees that
Sage-BFS is searching. As in the manufacturing do-
main, PBR shows better scaling properties than the
corresponding systematic algorithms.

Sage-DFS _, ,
" PBR -B—

/■

A

/ ■

/ .
i

1 -
" / \ / \ / '

/ V "
/ -

3 4 5
Query Size

Figure 11: Query Plan Quality Comparison

Related work
Some of the most closely related work is on plan merg-
ing (Foulser, Li, & Yang 1992). Their system solves a
complex goal by dividing it into subgoals, solving the
subproblems, and combining the partial solutions ex-
ploiting synergies. They improve the quality of a plan
by replacing a set of operators by one operator that
can do the same job. Planning by Rewriting differs
in that it starts with a complete solution plan for the
original goal, and it generalizes plan merging by allow-
ing the replacement of a subplan by another subplan,
thus expanding the types of plan transformations and
the opportunities for cost reduction.

Case-based planning also attempts to solve a prob-
lem by modifying a previous solution (Veloso 1994;
Paulokat & Wess 1994). Systematic algorithms, such
as (Hanks k Weld 1995), invert the decisions done in
refinement planning to find a path between the solu-
tion to a similar old problem and the new problem.
Our work modifies a solution to the current problem,
so there is no need for similarity metrics, nor retrieval
process. Moreover, our rewriting rules indicate how to
transform a solution into another solution plan, rather
than searching blindly up and down the space of par-
tial plans. However, the rules in PBR may search the
space of rewritings non-systematically. Such an effect

O

0.02

0

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

\ .
'v

1

pbr-sage •*■•••

• . A. ...-L.

V

3 4 5
Query Size

Figure 12: Query Plan Quality (PBR only)

is ameliorated by the gradient-descent search strategy.
Local search has a long tradition in combinatorial

optimization (Papadimitriou & Steiglitz 1982). Lo-
cal improvement ideas have found application in con-
straint satisfaction, scheduling, and heuristic search.
In constraint satisfaction, (Minton 1992) start with a
complete, but inconsistent, variable assignment and
efficiently search the space of repairs using a simple
heuristic, min-conflicts. In our work we focus on a
STRIPS-like planning paradigm (with fairly expressive
operators) in which the rewritings yield complete and
consistent plans, as opposed to complete but incon-
sistent variable assignments. In work on scheduling
and rescheduling, (Monte Zweben & Deale 1994) de-
fine a set of general, but fixed, repairs methods, and
use simulated annealing to search the space of sched-
ules. Our plans are networks of actions as opposed to
the metric-time total-order tasks in that work. Also we
can easily specify different rewriting rules (general or
specific) to suit each domain, as opposed to their fixed
strategies. Related ideas have been used in heuristic
search (Ratner & Pohl 1986). In that work, first they
find a valid sequence of operators using an approxi-
mate algorithm. Then, they identify segments of this
sequence, take their initial and end states, and heuris-
tically search for a shorter path for that segment (the
cost metric is the path length). They are doing a state-
space search, while PBR is doing a plan-space search.
The least-committed partial-order nature of PBR al-
lows it to optimize the plans in ways that cannot be
achieved by optimizing linear subsequences.

A variety of research has attacked the complexity
of planning. Some systems incorporate automatically
learned search control, for example, search control
rules (Minton 1988) and abstraction (Knoblock 1994a).
Our system does not learn the rewriting rules currently
(see Future Work). Other work has reduced planning
to propositional satisfiability, which can be solved by
stochastic local search (Kautz k Selman 1996). These
approaches do not specifically address plan quality, or
else they consider only very simple cost metrics (such
as the number of steps). Quality-improving control

rules are learned in (Perez 1996), but planning effi-
ciency was not significantly improved. By exploiting
domain-specific knowledge, conveniently expressed as
plan rewriting rules, and the local search approach, we
improve both plan efficiency and quality. Moreover, we
provide an anytime algorithm while other approaches
must run to completion.

Some domain specific planners have also used a
transformational approach, for example, query, evalua-
tion in centralized databases (Graefe & DeWitt 1987).
They parse the query to obtain an initial evaluation
plan and iteratively transform this plan using a set of
rules based on the algebra of the data model. PBR of-
fers a more general and easily extensible framework to
tackle more complex information gathering domains.
Finally, the research in graph rewriting (Schurr 1996)
may provide efficient matching algorithms and perhaps
another implementation vehicle using high-level graph-
rewriting programming languages.

Future Work

There are several issues that we plafrto address more
thoroughly in the future: initial plan generation, au-
tomatic rule generation, and alternative search strate-
gies. Initial plan generation is domain-specific, but
we intend to provide a domain independent procedu-
ral plan construction language to allow the convenient
specification of plan construction algorithms. It will
include primitives for adding steps and ordering con-
straints, but it will hide the complexity of the data
structures used to represent the actual plans.

We believe that the rules can be generated by fully
automated procedures in many domains. The methods
can range from static analysis of the domain operators
to analysis of sample equivalent plans (that achieve the
same goals but at different costs). Note the similarity
with methods to automatically deduce search control
(Minton 1988; Etzioni 1993) and also the need to deal
with the utility problem.

There are many techniques in the local search litera-
ture that we could adapt to our framework. In partic-
ular, we plan to explore variable depth rewriting, and
variations of tabu search. In variable depth, a sequence
of rewritings is applied in order to overcome initial cost
increases that eventually would lead to strong cost re-
ductions. This idea leads to the creation of rule pro-
grams, which specify how a set of rules are applied to
the plan, possibly depending on run-time conditions.
In tabu search, some of the rewritings are temporar-
ily forbidden regardless of their cost. This is useful
to avoid returning to some previously visited plan and
thus cycling. Also, it forces the search not to be con-
centrated in a small local area around a local minimum.
Finally, we plan to improve the planner implementa-
tion. For example, a RETE-like graph matcher (Forgy
1982) would make the system much more efficient.

Conclusions
We presented a new paradigm for efficient high-quality
planning based on local search and plan rewriting, and
we provided initial experimental support for its use-
fulness in several domains. This framework achieves a
balance between domain knowledge, conveniently ex-
pressed as plan rewriting rules, and general local search
techniques that have been proved useful in many hard
combinatorial problems. We expect that these ideas
will push the frontier of solvable problems for many
domains into the range of real-world problems in which
high quality plans and anytime behavior are needed.

Acknowledgments
The research reported here was supported in part by
Rome Laboratory of the Air Force Systems Command
and the Advanced Research Projects Agency under
contract no. F30602-94-C-0210, and in part by the
National Science Foundation under grant number IRI-
9313993. The authors wish to thank the anonymous
reviewers for their useful comments.

References
Arens, Y.; Knoblock, C. A.; and Shen, W.-M. 1996.
Query reformulation for dynamic information inte-
gration. Journal of Intelligent Information Systems,
Special Issue on Intelligent Information Integration
6(2/3):99-130.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence, 49-54.
Erol, K.; Nau, D.; and Subrahmanian, V. S. 1995.
Decidability and undecidability results for domain-
independent planning. Artificial Intelligence 76(1-
2):75-88.

Etzioni, O. 1993. Acquiring search-control knowledge
via static analysis. Artificial Intelligence 62(2):255-
302.

Forgy, C. L. 1982. Rete: A fast algorithm for the
many pattern/many object pattern match problem.
Artificial Intelligence 19:17-37.
Foulser, D. E.; Li, M.; and Yang, Q. 1992. Theory and
algorithms for plan merging. Artificial Intelligence
57(2-3):143-182.

Graefe, G., and DeWitt, D. J. 1987. The EXODUS
optimizer generator. Proceedings of the 1987 ACM
SIGMOD International Conference on Management
of Data 16(3):160-172.

Hanks, S., and Weld, D. S. 1995. A domain-
independent algorithm for plan adaptation. Journal
of Artificicial Intelligence Research 2:319-360.
Kautz, H., and Selman, B. 1996. Pushing the en-
velope: Planning, propositional logic, and stochas-
tic search. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence.

Knoblock, C. A. 1994a. Automatically generating ab-
stractions for planning. Artificial Intelligence 68(2).
Knoblock, C. A. 1994b. Generating parallel execution
plans with a partial-order planner. In Proceedings
of the Second International Conference on Artificial
Intelligence Planning Systems.

Knoblock, C. A. 1995. Planning, executing, sensing,
and replanning for information gathering. In Proceed-
ings of the Fourteenth International Joint Conference
on Artificial Intelligence.
Knoblock, C. A. 1996. Building a planner for in-
formation gathering: A report from the trenches. In
Proceedings of the Third International Conference on
Artificial Intelligence Planning Systems.
Minton, S. 1988. Learning Search Control Knowl-
edge: An Explanation-Based Approach. Boston, MA:
Kluwer.

Minton, S. 1992. Minimizing conflicts: A heuristic re-
pair method for constraint-satisfaction and scheduling
problems. Artificial Intelligence 58(1-3):161—205.
Monte Zweben, B. D., and Deale, M. 1994. Scheduling
and rescheduling with iterative repair. In Intelligent
Scheduling. San Mateo, CA: Morgan Kaufman. 241-
255.
Nau, D. S.; Gupta, S. K.; and Regli, W. C. 1995. AI
planning versus manufacturing-operation planning:
A case study. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence.
Papadimitriou, C. H., and Steiglitz, K. 1982. Com-
binatorial Optimization: Algorithms and Complexity.
Englewood Cliffs, NJ: Prentice Hall.
Paulokat, J., and Wess, S. 1994. Planning for machin-
ing workpieces with a partial-order, nonlinear plan-
ner. In Working notes of the AAAI Fall Symposium
on Planning and Learning: On to Real Applications.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP:
A sound, complete, partial order planner for ADL.
In Third International Conference on Principles of
Knowledge Representation and Reasoning, 189-197.
Perez, M. A. 1996. Representing and learning quality-
improving search control knowledge. In Proceedings of
the Thirteenth International Conference on Machine
Learning.

Ratner, D., and Pohl, I. 1986. Joint and LPA*: Com-
bination of approximation and search. In Proceedings
of the Fifth National Conference on Artificial Intelli-
gence.

Schurr, A. 1996. Programmed Graph Replacement
Systems. World Scientific.

Veloso, M. 1994. Planning and Learning by Analogical
Reasoning. Springer Verlag.

Yu, C, and Chang, C. 1984. Distributed query pro-
cessing. ACM Computing Surveys 16(4):399-433.

